skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Newman, M_E_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mutual information is commonly used as a measure of similarity between competing labelings of a given set of objects, for example to quantify performance in classification and community detection tasks. As argued recently, however, the mutual information as conventionally defined can return biased results because it neglects the information cost of the so-called contingency table, a crucial component of the similarity calculation. In principle the bias can be rectified by subtracting the appropriate information cost, leading to the modified measure known as the reduced mutual information, but in practice one can only ever compute an upper bound on this information cost, and the value of the reduced mutual information depends crucially on how good a bound is established. In this paper we describe an improved method for encoding contingency tables that gives a substantially better bound in typical use cases, and approaches the ideal value in the common case where the labelings are closely similar, as we demonstrate with extensive numerical results. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. The number of non-negative integer matrices with given row and column sums features in a variety of problems in mathematics and statistics but no closed-form expression for it is known, so we rely on approximations. In this paper, we describe a new such approximation, motivated by consideration of the statistics of matrices with non-integer numbers of columns. This estimate can be evaluated in time linear in the size of the matrix and returns results of accuracy as good as or better than existing linear-time approximations across a wide range of settings. We show that the estimate is asymptotically exact in the regime of sparse tables, while empirically performing at least as well as other linear-time estimates in the regime of dense tables. We also use the new estimate as the starting point for an improved numerical method for either counting or sampling matrices with given margins using sequential importance sampling. Code implementing our methods is available. 
    more » « less
  3. We study core-periphery structure in networks using inference methods based on a flexible network model that allows for traditional onion-like cores within cores, but also for hierarchical tree-like structures and more general non-nested types of structure. We propose an efficient Monte Carlo scheme for fitting the model to observed networks and report results for a selection of real-world data sets. Among other things, we observe an empirical distinction between networks showing traditional core-periphery structure with a dense core weakly connected to a sparse periphery, and an alternative structure in which the core is strongly connected both within itself and to the periphery. Networks vary in whether they are better represented by one type of structure or the other. We also observe structures that are a hybrid between core-periphery structure and community structure, in which networks have a set of non-overlapping cores that correspond roughly to communities, surrounded by a single undifferentiated periphery. Computer code implementing our methods is available. 
    more » « less